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1  INTRODUCTION 

The aim of this paper is to provide an introduction to the aims, underlying theory and practical 

application of change score, graphical chain, fixed/random effects and two different types of 

structural equation modelling (SEM). We restrict ourselves to the use of these methods to analyse 

panel data. By panel data we mean data which contain repeated measures of the same variable, 

taken from the same set of units over time. In our applications the units are individuals. 

However, the methods presented can be used for other types of units, such as businesses or 

countries. The paper does not provide details of specific software packages, and focuses in the 

main on procedures which are available in standard software. By using exemplars we provide a 

guide for substantive social scientists new to the area of panel data analysis, but who have a 

working knowledge of generalized linear models. 

 

1.1 The Advantages of Panel Data  

A primary goal of empirical social science is to make data based inferences about causal relations 

between variables in the social world. Does an individual’s social class influence their vote choice 

at elections, or are perceptions of the economy and the competence of party leaders a more 

important set of causes? Does becoming a parent cause people to change their views about the 

role of women in society, or do changing gender role attitudes make people more likely to 

become parents? Such substantive questions necessarily require the analyst to move beyond 

simply describing patterns of association between variables and make inferences of a causal 

nature. 

 

It is well known that cross-sectional data is of limited use in addressing questions to do with 

causal ordering. This is because all we are able to infer from a cross-sectional regression of one 

variable on another is that, at the time of measurement, individuals who score relatively higher on 

the first variable tend also to score relatively higher on the second variable. That is, there is a 

correlation between the rank ordering of individuals on the variables in question. Any desire to 

infer a causal relationship from a cross-sectional parameter is limited, in particular, by the 
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possibility of (1) unobserved variable bias (Duncan 1972; Holland 1986), (2) endogeneity bias 

(Hausman 1978; Berry 1984; Finkel 1995) and (3) indeterminacy over the sequencing of the 

causal mechanism.  

 

Unobserved variable bias pertains when there is a bivariate (or partial) correlation between two 

variables, X  and Y , which become conditionally independent, given a third variable (or vector 

of variables), Z , which has not been included in the model. Endogeneity bias arises when both 

X  and Y  exert a direct causal influence on each other but the model specifies the relationship 

as running in only one direction, say from X  to Y . Point (3) relates to the fact that, for one 

variable to cause another, it must precede it in time. When all variables are measured at the same 

time point, it is frequently not possible to establish whether this prerequisite of causal influence 

occurs. In short, with cross-sectional, data we can infer nothing about intra-individual change 

over time.  

 

In order to get a handle on the time ordering of variables and to track individual trajectories over 

time, it is necessary to collect panel data, referred to by some disciplines as ‘cross-sectional time 

series’. We consider panel data, where the same variables are measured at different time, as a 

special case of longitudinal data, where information not necessarily on the same variables is 

collected over time. Other examples of longitudinal data include event history and survival data. 

These have their own strengths and weaknesses but are beyond the scope of our objectives in 

this paper. The addition of a time dimension to the static nature of cross-sectional data brings 

with it, then, greater leverage on questions of causality, particularly indeterminacy over the 

sequencing. By the same token, however, the statistical models suitable for this type of data are 

generally more complex and difficult to estimate than those appropriate for cross-sectional data. 

In particular, models for panel data must accommodate the fact that observations for the same 

unit over time are unlikely to be independent of one another, a basic assumption of cross-

sectional regression estimators.  In an effort to bring some of these techniques to the attention of 

the community of empirically minded social scientists, we describe in this paper how some of 
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these techniques can be applied to panel data in order to incorporate a temporal dimension into 

statistical models. We substantiate our discussion with a set of empirical examples applied to 

datasets which are publicly accessible through the UK Economic and Social Data Service 

(http://www.esds.ac.uk/). 

 

The techniques covered in this briefing paper reflect the authors’ disciplinary backgrounds and 

substantive areas of interest and are, by necessity, not an exhaustive list of panel data models. 

Nonetheless, they represent what we consider to be the primary extant frameworks for the 

analysis of panel data and we hope that this paper will provide substantive social scientists with 

an introductory overview of the foundational assumptions, similarities and differences, 

advantages and disadvantages of and between each of them. A full and detailed consideration of 

the techniques addressed in this paper would require a book of several volumes. Our treatment 

of them here is, necessarily, introductory and brief. Therefore, we urge interested readers to 

pursue the more in-depth investigations cited in the bibliography.  

 

It is worth noting that much of the confusion around methods for the analysis of panel data 

results from the fact that different disciplines have tended to provide solutions to the peculiarities 

of panel data without a great deal of cross-fertilisation. This has resulted in a bewildering array of 

terminological variants, notational orthodoxies and software applications. Such apparent 

heterogeneity often masks much that is shared in terms of the aims, objectives and methods of 

analysis. For instance, models that allow regression coefficients to vary across values of a higher 

order variable is variously described as a random coefficient, random effect, mixed, multilevel, 

hierarchical or latent growth models depending on one’s disciplinary background. In this briefing 

paper we try to clarify where such commonalities exist and emphasise genuine differences in the 

practical questions that the different techniques we cover can address. Readers interested in a 

detailed treatment of the disciplinary and historical roots of the different panel data techniques 

are directed to Raudenbush (2001). 



 
 

 
 
 

6 

1.2 A Caveat 

Having argued that panel data provide greater leverage on issues of causal ordering than static 

cross-sectional data, it is important to note that panel designs are still observational in nature and 

are, therefore, no panacea for problems of endogeneity and omitted variable bias. If we observe 

change in X  to be related to change in Y , in most situations we cannot exclude the possibility 

that the two processes are independent, conditional on an unobserved, time-varying Z . Similarly, 

consider a panel data set with the first wave of observations taken at time 1t . If X  measured at 

time 1t  influences Y  at time 2t , we cannot exclude the possibility that a measure of Y  at time 

0t  does not itself exert a causal influence on X  at 1t . Thus, although panel data represents a 

considerable improvement on cross-sectional data for understanding dynamic processes, it is 

important to note its fundamental limitation in unequivocally identifying causal relationships. 

 

1.3 Notation 

Let us introduce some notation for the analysis of repeated measures data. Our response is ijY  

measured at times ijt . Individuals are indexed by mi ,,1 K= . Observations are indexed by 

inj ,,1 K= , for individual i. Sometimes when we discuss a generic individual we will drop the 

subscript j  from ijY  and ijt , and use jY  and jt  to denote the observation and time point. Also, 

when our response is an underlying latent variable measured by observed indicators we will index 

the indicators using superscripts. For example, if jY  is measured by three indicators they will be 

denoted by 
1

jY , 
2

jY  and 
3

jY . 

 

We have p covariates measured at time ijt : ijpijij xxx ,,, 21 K . Note that for a time-constant 

variable the value of the covariate will be the same for each value of j . A time-constant variable 

is one which does not change within individuals for the duration of the panel. Examples of time-
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constant variables are gender, parental occupation and date of birth. A time-varying variable is 

one which can take on different values for the same individual over the duration of the panel. 

Examples of time-varying variables are martial status, income and vote intention.  

 

In the notation, response (endogenous/dependent) variables will generally be denoted by 

uppercase letters and covariates (exogenous/independent) variables will be denoted by lower case 

letters. For example, in a simple linear model, ijY  will be regressed on 1ijx . 

 

1.4 Framework and Structure of the Paper 

The paper describes four general approaches to the analysis of panel data: change score models, 

graphical chain models, fixed/random effect models and structural equation models. These are 

presented in the paper as separate and rather distinct modelling frameworks for didactic 

purposes. In practice, there is a great deal of overlap between all of them. In some cases (e.g., 

change score models and fixed effect models), one approach is a more general extension of 

another, while in others (e.g., random effect and latent growth curve models) completely 

equivalent models can sometimes be estimated, yielding identical parameter estimates and 

substantive conclusions.  

 

Our general approach in the paper is to begin by setting out, in conceptual terms, the underlying 

rationale, key features and main uses of the model. We then give a more formal definition of the 

model and provide notation where appropriate. An application of the technique is then presented 

using a ‘real data’ example from analyses conducted as part of the ‘Modelling Attitude Stability 

and Change using Repeated Measures Data’ project. 
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2 CHANGE SCORE MODELS 

 
The simplest model for assessing predictors of change in a response between two time points is 

the change score model, where change in the variable of interest is regressed on the predictors of 

interest: 

.11012 iippiii exxyY ++++=− βββ L   

This allows the analyst to address the question of whether change over time is related to the fixed 

characteristics of individuals. Here 1iy  and 2iY  are the responses of individual i at time points 1 

and 2, respectively, 1ix  to ipx  are the values of the p predictors and ie  is an error term. This 

version of the change, in which 1iy  is not included as a predictor in the model, is termed the 

‘unconditional’ change score model. Essentially, the change score model enables the analyst to 

apply cross-sectional methods to panel data by modelling the difference in Y  via Ordinary Lease 

Squares (OLS) regression. It is, perhaps, for this reason that this model has been frequently used 

in the applied literature, rather than for its suitability for the study of repeated measures data. 

Change score models are discussed by Allison (1990) and Finkel (1995). 

 

To illustrate the unconditional change score model we investigate the change in gender role 

attitude between 1991 and 1993. The data come from the British Household Panel Survey 1991-

1997. The analysis sample is childless women aged 16 to 39 who were in full-time employment in 

1991 and who responded in all of the first seven waves. The sample consists of 461 women and 

gender role attitudes are measured as the sum of the responses to six attitude statements given in 

Appendix A.  

 

Table 2.1 presents the parameter estimates and standard errors for the linear regression of the 

change in gender role attitude on: age in 1991, categorised; highest educational qualification in 

1991; whether mother worked when respondent was a child; and whether or not the woman 

became a parent between 1991 and 1993. The significant negative constant reveals that, on 

average, people between 16 and 21 years old become more traditional in their views. However, 
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the parameter estimates for those over 21 cancel this negative effect out, and hence the attitudes 

of the older groups do not change much. None of the other variables are significant. 

 

Table 2.1: Parameter estimates for the linear regression of change in attitude between 1991 and 

1993. 

 
Parameter 
estimate 

Standard 
error P-value 

Age (Ref: 16-21 years)    
   22-29 1.071 0.376 0.005 
   30-39 0.842 0.429 0.050 

Education in 1991 (Ref: Less than A level)    
   A level or above -0.337 0.298 0.258 

Mum worked (Ref: No)    
   Yes 0.340 0.305 0.265 

Became parent 91-93 (Ref: No)    
   Yes -0.950 0.685 0.166 

Economic activity (Ref: Stayed full-time)    
   Changed to part-time 0.597 0.818 0.466 
   Changed to other  1.067 0.601 0.076 
   Changed to family care 0.075 0.778 0.923 

Constant -1.131 0.400 0.005 

 

 

A major draw back of the unconditional change score model is that the change is assumed to be 

independent of the response at the first time point given the predictor variables. In practice, this 

assumption is unlikely to hold. Indeed, initial status is frequently found to be negatively 

correlated with change, the so-called ‘regression to the mean’ effect (see, for example, Finkel 

1995). An alternative model which does not make this assumption is the conditional change 

model, where the response at the first time point is included in the model as a predictor variable: 

.111102 iipippii eyxxY +++++= +ββββ L     (1.1) 

Note that it is usual to regress the response at the second time point on the predictors, rather 

than the change in response, since the two models are mathematically equivalent: subtracting the 

response at time 1 from both sides of equation (1.1) gives  

,)1( 1111012 iipippiii eyxxyY +−++++=− +ββββ L  



 
 

 
 
 

10 

so the parameters for all the explanatory variables are unchanged and the parameter for the 

response at time point 1 is reduced by one. For further discussion concerning the merits of 

unconditional and conditional change score models see Finkel (1995). A major limitation of the 

change score model is that it can only be applied to two waves of data. Where we have more than 

two waves of data, this means the analyst must discard important information. In the following 

sections of the paper we consider models to analyse panel data that incorporate information from 

more than two waves of data. 

 

To illustrate the conditional change score model, Table 2.2 presents the parameter estimates and 

standard errors for the linear regression of attitude in 1993 on age, education, became parent, 

mum worked, economic activity and attitude in 1991 for the data set described above.  

 

Table 2.2: Parameter estimates for the linear regression of attitude in 1993. 

 
Parameter 
estimate 

Standard 
error P-value 

Age (Ref: 16-21 years)    
   22-29 0.645 0.321 0.045 
   30-39 0.340 0.366 0.353 

Education in 1991 (Ref: Less than A level)    
   A level or above 0.070 0.255 0.783 

Mum worked (Ref: No)    
   Yes 0.759 0.261 0.004 

Became parent 91-93 (Ref: No)    
   Yes -0.016 0.586 0.979 

Economic activity (Ref: Stayed full-time)    
   Changed to part-time -0.320 0.698 0.647 
   Changed to other 1.113 0.510 0.030 
   Changed to family care -1.529 0.672 0.023 

Attitude in 1991  0.529 0.036 0.000 

Constant 8.806 0.8224 0.000 
 

 

Now after controlling for attitude in 1991, age is no longer significant. (The F-test that both 

parameters are zero gives F = 2.10, with p-value = 0.1239.) However, mother worked and 

economic activity are now significant, with those who mother worked when the respondent was 
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aged 14 becoming more liberal and those who took up family care between 1991 and 1993 

becoming more traditional. The fact that change in economic activity becomes more significant 

in the conditional change model probably results from the association between age and change in 

economic activity and the association between age and initial gender role score. 

 

Thus far we have used the conditional change model to test some of the links in the conceptual 

framework presented in Figure 1.1: it has been used to identify the predictors of (change in) 

attitude in 1993, after controlling for attitude in 1991. We suspect however, that the conditional 

change model is overlooking important pathways for example through which gender role 

attitudes are associated with becoming a parent, and through which becoming a parent is 

associated with change in labour force status.  We suspect that becoming a parent and change in 

economic activity are highly associated. By looking at the pathways in more detail using a 

graphical chain model we can identify whether gender role attitudes select individuals into 

parenthood, or are associated primarily with changes in economic activity. This is the topic of the 

next section. 

 

Figure 1.1: Conceptual Framework for the Relationship between Attitude Change and Behaviour 

Change. 

 

Attitude 
in 1993 

Back-ground 
variables: 
 
 Age 
 
Education 
 
Mum worked 

 

Attitude 
in 1991 

Became parent 
between 1991 
and 1993 

Change in economic 
activity between 1991 and 
1993 
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3 GRAPHICAL CHAIN MODELS 

 

Graphical models and graphical chain models are powerful tools to investigate complex systems 

consisting of a large number of variables (Wermuth and Lauritzen 1990). The graphical chain 

modelling approach builds up a complex model using a sequence of regression models. The use 

of linear, binary and multinomial logistic regression models allows the inclusion of continuous 

(e.g., attitude), binary (e.g., becoming a parent) and categorical (e.g., economic activity) responses. 

Below we introduce the mathematical graphs used in graphical modelling and review some of the 

key ideas of graphical modelling. For further details of the method see, for example, Whittaker 

(1990) or Cox and Wermuth (1996); for medical applications see Hardt et al. (2004) or Ruggeri et 

al. (2004); and for demographic applications see Mohamed, Diamond and Smith (1998), Magadi 

et al. (2004) or Borgoni, Berrington and Smith (2004). 

 

3.1 Mathematical Graphs  

A mathematical graph consists of a set of nodes (vertices) and a set of edges. Two nodes 

connected by an edge are called adjacent. The edge can be directed (also called an arrow) or 

undirected. A path is a sequence of adjacent nodes. A graph is acyclic if it does not contain any 

directed cycle, a directed cycle being defined as a path from a node back to itself following a 

directed route, i.e., a direction preserving path. Figure 3.1a shows an undirected graph with nodes 

labelled a, b, c, d and undirected edges (a, b), (a, c), (a, d) and (b, c). The sequence of nodes a, b, c 

identifies one possible path from a to c. If the undirected edge from a to c is replace by an arrow 

then we have a cyclic graph as now the direction preserving path a, b, c, a is a path from a back to 

itself following a directed route. A subset of nodes C separates a subset of nodes A from a subset 

of nodes B if every path from a node in A to a node in B must pass through C.  For example, in 

Figure 3.1a, the set C = {a} separates A = {b, c} from B = {d}. 
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Figure 3.1: (a) An acyclic graph (b) A chain graph.  
        

(a)  (b) 
 

a 

•  

b 

    • 

 a 

•  

b 

    • 

   • 
    c 

    • 
c 

 

• 
d 

  

• 
d 

 

 

A chain graph is obtaining by partitioning the set of nodes in subsets called blocks. If nodes in 

different blocks are connected then this is by arrows, while if they are in the same block then they 

are connected by undirected edges. This block formulation excludes graphs with cycles. Nodes 

belonging to the same block are usually gathered into a box. Figure 3.1b shows a simple 2-block 

chain graph. A chain graph for which each block contains just one node is called a direct acyclic 

graph (DAG). However, a chain graph is more general than a DAG since it can contain a mixture 

of directed and undirected edges.  

 

3.2 Graphical Models 

Here nodes represent random variables and undirected edges the association between pairs of 

variables. A usual notation is to use circles for continuous variables and dots for categorical or 

nominal variables. Asymmetric relationships between variables, i.e., one anticipates in some sense 

the other, are represented by arrows. Figure 3.2a depicts a hypothetical graphical model, 

including three variables from our current example, containing interactions between age and 

education, age and mum worked and finally education and mum worked. Figure 3.2b displays a 

two block graphical chain model. A direction preserving path in a chain allows the representation 

of both direct and indirect effects. In Figure 3.2b for instance it is possible to identify a direct 

effect of education on attitude, as well as an indirect effect of mum worked through education. 

 



 
 

 
 
 

14 

Figure 3.2: (a) a graphical model and (b) a chain graph. 
 

(a)     (b) 
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• 
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Age 

  • 

Education       

• 
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   •••• 
Mum worked 

   

•••• 
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Fundamental to graphical modelling is the concept of conditional independence. A graphical 

model uses a graph to represent a set of conditional independence relationships amongst the 

corresponding variables. In particular, in an undirected (conditional) independence graph an edge 

between nodes a and b is missing if and only if aY  is independent of bY  given the remaining 

variables under consideration. For example, in Figure 3.1a, cY  is conditionally independent of dY  

given aY  and bY , since there is no edge between c and d, but aY  is not conditionally independent 

of bY  given cY  and dY , since there is an edge between a and c. An independence graph defined 

in this way is said to satisfy the pairwise Markov property. 

 

Under mild conditions, an independence graph also satisfies the global Markov property which 

means that any two subsets of variables which are separated by a third are conditionally 

independent give only the variables in the third subset. This result allows us to determine the 

conditional independence structure of subsets of the variables from the independence graph. For 

example, in Figure 3.1a cY  is also conditionally independent of dY  given just aY , since C = {a} 

separates A = {b, c} from B = {d}. 

 

Defining the Markov properties of a chain graph is less straightforward; for details see, for 

example, Whittaker (1990) or Cox and Wermuth (1996). However, the following two rules based 

on the Markov properties are often helpful for drawing conclusions from a chain graph: 
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1. any non-adjacent pairs of variables (i.e., not joined by an edge) are conditionally 

independent given the remaining variables in the current and previous blocks; 

2. a variable is independent of all the remaining variables in the current and previous blocks 

after conditioning only on the variables that are adjacent. 

For instance, for the graph in Figure 3.2b it follows from rule 1 that attitude is independent of 

age given education and mum worked. From rule 2, it follows that attitude is independent of age 

and mum worked given the education, i.e., age and  mum worked are only indirectly associated 

with attitude. Such variables are called indirect explanatory variables by Cox and Wermuth 

(1996).  

 

A chain graph is a well recognised tool to specify causal relationships amongst processes (Pearl 

1995). A chain graph drawn with boxes is viewed as a substantive research hypothesis about 

direct and indirect relation amongst variables (Wermuth and Lauritzen 1990). The variables are 

ordered a priori, as shown, for example, in Figure 3.2b. The model is specified according to 

theory which may suggest associations or dependencies to be omitted from the graph. The 

presence of an edge or an arrow in the graph can then be empirically tested. However, whilst we 

are able to demonstrate associations consistent with hypothesized causal links we are unable, 

when fitting chain graphs to observational data, to prove causality. Graphical chain models are 

ideally suited to situations where we have prospective data collected in sweeps of a panel survey. 

The temporal ordering of the data helps in identifying the causal ordering of variables across the 

life course. Also, graphical chain modelling can help cope with attrition as the available sample 

can be used in each stage of the chain, confining the potentially serious effect of drop-out to the 

later components of the chain. 
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3.3 Example: Graphical Chain Modelling of Women’s Gender Role Attitudes, 

Entry into Parenthood and Change in Economic Activity. 

Following the conceptual framework in Figure 1.1, we use a graphical chain graph to examine the 

reciprocal relationship between gender role attitudes, entry into parenthood and change in 

economic activity among a sample of women who are initially childless and in full-time 

employment. We make the assumption that entry into parenthood precipitates a change in 

economic activity. (Although we are aware for that a minority of women, e.g., those experiencing 

redundancy, change in employment status could theoretically precipitate the ‘decision’ to have a 

child.) Whether the woman made a transition between 1991 and 1993 in her employment status 

is coded as a categorical variable (stayed full-time, moved to part-time, moved to family care, 

moved to other: retired, sick, unemployment, student). 

 

We have already modelled the predictors of attitude in 1993 (Table 2.2). Table 3.1 presents the 

parameter estimates and standard errors for the linear regression of attitude in 1991 on age, 

education and mum worked. Here we see that, on average, those aged between 16 and 21 were 

more liberal in 1991 than the other two groups. This helps explain the difference in the 

significance of age in the unconditional and conditional scores: those aged between 16 and 21 

tend to have higher attitude scores in 1991 and change in score is related to attitude in 1991, so 

once ones controls for the initial score, age is not significant in the change score model. We also 

see from Table 3.1 that more educated women and women whose mother worked when the 

respondent was 14 are significantly more liberal. 

 



 
 
 

17 

Table 3.1: Parameter estimates for the linear regression of attitude in 1991. 

 
Parameter 
estimate 

Standard 
error P-value 

Age (Ref: 16-21 years)    
   22-29 -0.988 0.423 0.020 
   30-39 -1.125 0.484 0.020 

Education in 1991 (Ref: Less than A level)    
   A level or above 0.916 0.388 0.007 

Mum worked (Ref: No)    
   Yes 0.881 0.346 0.011 

Constant 21.005 0.441 0.000 

 

 

A binary logistic regression model is used to investigate the predictors of becoming a parent. The 

parameter estimates of this model are presented in Table 3.2 and reveal that, for our childless 

sample, the odds of becoming a parent in the subsequent two years increase with age. An 

interaction between age and education is to be expected (Rendall and Smallwood 2003). 

However, given the small sample size, this interaction is not significant in our model (likelihood 

ratio test statistic = 3.91 on 2 degrees of freedom, p-value = 0.142), although the parameter 

estimates are in the right direction: aged between 16 and 21, more educated women have lower 

odds of becoming a parent compared to the less educated, but when aged between 30 and 39 

they have higher odds.  

 

Table 3.2: Parameter estimates for the logistic regression of becoming a parent between 1991 and 

1993. 

 
Parameter 
estimate 

Standard 
error P-value 

Age (Ref: 16-21 years)    
   22-29 1.014 0.434 0.019 
   30-39 1.016 0.470 0.031 

Education in 1991 (Ref: Less than A level)    
   A level or above -0.171 0.273 0.531 

Mum worked (Ref: No)    
   Yes 0.467 0.297 0.115 

Attitude in 1991  -0.032 0.038 0.392 

Constant -2.173 0.907 0.017 
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A multinomial logistic regression model is used to investigate the predictors of change in 

economic activity. The parameter estimates of this model are presented in Table 3.3 and reveal 

that the odds for moving to part-time work or family care, compared with staying full-time, are 

greatly increased if the woman becomes a parent. Attitude in 1991 is also a significant predictor. 

Women with more liberal attitudes are more likely to remain in full-time work and less likely to 

change to part-time or to take up family care.  Likelihood ratio tests reveal that overall, none of 

the other variables are significant. 

 

Table 3.3: Parameter estimates for the multinomial logistic regression of change in economic 

activity between 1991 and 1993. 

Change in economic activity 
91-93 (Ref: Stayed full-time) 

 
Changed to part-time 

 
Changed to other 

 
Changed to family care 

 
 

Est. 
 

S.e. 
P-

value 
 

Est. 
 

S.e. 
P-

value Est. S.e. 
P-

value 

Age (Ref: 16-21 years) 
      

   
   22-29 -0.376 0.780 0.630 -0.917 0.439 0.037 0.085 0.814 0.917 
   30-39 0.270 0.789 0.732 -0.873 0.527 0.097 0.062 0.871 0.943 

Education (Ref: Less than A 
level) 

      

   
   A level or above 0.254 0.553 0.646 -0.475 0.395 0.229 -0.131 0.545 0.811 

Mum worked (Ref: No) 
      

   
   Yes 0.266 0.578 0.646 -0.443 0.392 0.259 0.141 0.571 0.803 

Became a parent 91-93 (Ref: 
No) 

      

   
   Yes 4.091 0.601 0.000 0.199 1.074 0.853 6.090 0.674 0.000 

Attitude in 91 -0.156 0.070 0.027 0.010 0.057 0.859 -0.228 0.070 0.001 

Constant -0.827 1.533 0.590 -1.623 1.276 0.204 -0.009 1.506 0.995 
 

 

We summarize the results graphically (Figure 3.3). From Rule 1, the absence of an edge between 

attitude in 1993 and becoming a parent 1991 and 1993 indicates that they are conditionally 

independent given the variables in the preceding blocks. From Rule 2 we conclude that attitude 

in 1993 is independent of age, education and becoming a parent, given attitude in 1991, whether 

the respondent’s mother worked and change in economic activity. Hence, change in gender role 

attitude is not associated with becoming a parent per se, but with the move to part-time work or 
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family care that often accompanies first motherhood. The graph also tells us that entry into 

parenthood is independent of gender role attitudes, given the other variables in the preceding 

blocks, but that change in economic activity is dependent upon gender role attitudes. Finally, the 

chain graph tells us that age is only indirectly associated with attitude change, for example, 

through its impact on initial attitude and on the likelihood of becoming a parent. 

 

Figure 3.3. Graphical chain graph of women’s gender role attitudes, entry into parenthood and 

change in economic activity. 

 

A disadvantage of our graphical chain model is that it assumes that gender role attitude is 

measured without error. A more sophisticated approach would be to estimate gender role attitude 

as an underlying latent variable, regressed on six indicator variables (the attitude statements). 

Panel data where we have repeated measurement of a multiple indicator latent construct over 

time can provide useful information about the magnitude of measurement error and 

opportunities for estimating models which take account of measurement error. For this to be 

possible however, we need an approach which estimates all of the regression equations 

simultaneously, and a global measure of model fit. Structural equation models, which have these 

Attitude 
in 1993 

 
 Age            
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Attitude 
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capabilities and hence can include correlated errors of measurement and correlated structural 

disturbances terms, are the subject of Sections 4 and 6. 
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4 CROSS-LAGGED STRUCTURAL EQUATION MODELS 

 

If we are interested in the nature of the relationship between two variables, X  and Y , four 

possible causal systems could underlie the covariance structure of the observed data, assuming 

both X  and Y  are not influenced by any third variable, Z : 

X  does not cause Y  and Y  does not cause X ; 

X  causes Y  and Y  does not cause X ; 

Y  causes X  and X  does not cause Y; 

X  causes Y  and Y  causes X . 

 

A cross-sectional regression of Y  on X , or X  on Y , will only enable the analyst to discount 

the first of these possibilities, by rejecting the null hypothesis of zero correlation at the specified 

level of confidence.  Where zero correlation can be rejected as unlikely, given the sample data, 

any of the three remaining possibilities could still represent the true data generating mechanism in 

the population.  

 

Cross-lagged structural equation models (Finkel 1995; Marsh and Yeung 1997; Campbell and 

Kenny 1999) make use of the inherent time ordered nature of panel data to address such 

questions of causal ordering. Cross-lagged models are also known as ‘simplex models’, 

‘autoregressive models’, ‘conditional models’ and ‘transition models’ (Twisk 2003). A definitional 

feature of this type of model is that it is estimated in a single step, rather than as a series of 

separate regressions. An advantage of the single estimation is that it yields a global likelihood for 

the model and, thereby, the full range of tests and indices of model fit that are standard within 

the SEM framework (Bollen 1989). The basic structure of the cross-lagged model is presented in 

Figure 4.1, which shows a path diagram for a three wave, two variable cross-lagged panel model.  
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Figure 4.1: Three wave, two variable cross-lagged panel model. 

 

 

 

 

 

 

 

 

 

 

Here there are two variables of interest, X  and Y , and each variable (represented by ellipses in 

Figure 4.1) is regressed on both its own lagged score and the lagged score of the other variable at 

the previous measurement occasion. At the first wave of measurement, 1x  and 1y  are specified 

as exogenous and allowed to covary. An alternative specification of this model is for the cross 

effects to be synchronous, that is running between X  and Y  variables at the same time point, as 

opposed to the lagged measure. This specification may be preferred where the time gap between 

measurements is long and when the proposed causal mechanism is of short duration, although it 

can raise identification and estimation problems not found in the cross-lagged model.  

 

The model in Figure 4.1, then, provides an estimate of the (lagged) effect of each variable of 

interest on the other, net of autocorrelation of each variable with its lagged measurement, and 

whatever additional covariates are included in the model. The model parameters of greatest 

interest in the cross-lagged model are the auto-regressive ( 8541 ,,, ββββ ) and cross-lagged 

( 7632 ,,, ββββ ) regression coefficients. The auto-regressive parameters, in conceptual terms, 

determine the stability of the rank ordering of individuals on the same variable over time. The 

cross-lagged regression parameters, on the other hand, tell us how much variation in one variable 

y1 

ρ12 
β7 

β5 

β6 
1x  

β1 

 β2 

 β3 

 Y2 

ρ24 

ρ13 

X3 

ρ34 

X2 

d1 

d2 

d3 

d4 

Y3 

β4 

 

β8 



 
 
 

23 

at time 1t  is able to predict change in the other variable between times 1t  and 2t , net of any 

controls specified in the model. For example, if we find positive and significant cross-lagged 

coefficients running in both directions, this supports a reciprocal effects model, in which each 

variable exerts a causal influence on the other over time. If only one of the cross-lagged 

coefficients is statistically significant, we can conclude that the causal relationship is uni-

directional in nature. If neither of the cross-lagged coefficients are significant, we should infer 

that the two variables are causally unrelated. Note that the inclusion of a lagged endogenous 

variable provides some ‘protection’ against the effects of unobserved time-constant variables. 

However, unlike the fixed effects models discussed in Sections 5 and 6, the lagged endogenous 

variable approach cannot completely remove unobserved unit heterogeneity (Halaby 2004; 

Allison 2005). 

 

The general structure presented in Figure 4.1 can be extended to include multiple variables and 

multiple waves of data (see Finkel 1995). The coefficients for the stability and lagged effects may, 

respectively, be constrained to equality across waves, making these parameters equivalent to 

‘average’ effects over the duration of the panel. Although applying this type of equality constraint 

does not provide a solution to the problem of mapping discrete measurement intervals on to 

continuous processes, it can give a longer and, therefore, more realistic time frame over which to 

examine the hypothesised relationships. The empirical adequacy of such equality constraints can 

be assessed via the likelihood ratio test, against the unconstrained model, as these are nested one 

within the other. Where no loss of fit is incurred by fixing these parameters to equality over time, 

the constrained model should generally be preferred. 

 

4.1 Correlated Disturbance Terms 

An important thing to note about cross-lagged models is the importance of modelling 

covariances between the disturbances (represented by circles 1d  to 4d  in Figure 4), both within 

( 12ρ and 34ρ ) and across ( 13ρ and 24ρ ) waves. Disturbance terms represent the residual variances 
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of endogenous variables in the model and there are often good reasons to expect positive 

correlations between them. If, for example, a third variable, Z , causes both endogenous 

variables 2X  and 2Y  but Z  is not included in the model, the disturbance terms of 2X  and 2Y  

will necessarily be correlated (Anderson and Williams 1992). Similarly, we might expect to 

observe a positive correlation between the disturbances of the same lagged endogenous variable 

over time, resulting from a stable un-modelled cause of the variable in question (Williams and 

Podsakoff 1989). Failing to estimate covariances between disturbance terms can lead to biased 

estimates of cross-lagged and stability parameters and is a major reason for preferring this type of 

model over those which proceed via a series of independent, local estimations and hence, in 

practice, fix these covariances at zero.  

 

4.2 Measurement Error Models 

The model set out in Figure 4.1 implicitly assumes that the variables of substantive interest are 

measured without error. This is not a realistic assumption and, in practice, the vast majority of 

survey items are likely to contain both random and systematic components of error. This results 

from, inter alia, imperfections in the wording and layout of questionnaires, the personality and 

mood of the respondent and the mode in which the interview is conducted.  

 

Measurement error in independent variables results in attenuated effect sizes, so models which 

make a correction for measurement error are more likely to detect effects that are real, but 

possibly weak, in the population (Bollen 1989). In autoregressive models, systematic 

measurement error that is stable over time will manifest in the form of upwardly biased stability 

estimates for the concept of interest. Figure 4.2 shows a path diagram for a two variable, two 

wave, cross-lagged panel model with error correction and modelled error covariances.  
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Figure 4.2: Cross-lagged model with measurement error correction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Each of the concepts of analytical interest ( X and Y ) are specified as latent variables measured 

by three observed indicators, shown as rectangles in Figure 4.2 ( 1

1X  to 3

2X  and 1

1Y  to 3

2Y ). 

Each observed variable has an associated error variance, denoted by circles labelled 1e  to 12e  in 

Figure 4.2. The model partitions the variance of each observed variable into that which is caused 

by the latent variable of interest and that which is error (both systematic and random). The 

analyst can then specify covariances between the error terms, where they are expected or 

indicated post hoc, through indicators of model fit. In Figure 4.2 a covariance path is estimated 

between the error terms of the first and second indicators of latent variable X  at each wave 

(denoted by the curved double-headed arrow between them). Similarly, covariances between the 

error terms of the same item over the two waves of measurement are estimated for the third 

indicator of latent variable X  and the second indicator of latent variable Y . Another way of 

treating covariances between error terms is to model them directly as indicators of higher order 

latent variables or method factors (Rigdon 1994), though a consideration of this approach is 

beyond our scope here.  
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4.3 Factorial Invariance 

A further benefit of the use of multiple indicators is that measurement invariance over time may 

be evaluated. The problem, generally stated, is that questions may change their meaning over 

time, rendering estimates of stability and change inferentially problematic. While it is clearly not 

possible to impose invariant meaning on survey questions through any statistical procedure, it is 

possible to impose such a constraint and then test its reasonableness through standard measures 

of model fit (Meredith 1993). Measurement invariance can be imposed by constraining the 

corresponding factor loading between the latent variable and observed variables to equality at 

each time point. For example, in Figure 4.2, we would constrain the loading between  1X  and 

1

1X  to be equal to the loading between 2X  and 1

2X , and so on. A likelihood ratio test can then 

be performed to test the null hypothesis of no change in the relationship between the latent 

variable and its indicators over time. This kind of test is not available for single indicator or 

composite variables and any measurement invariance would be incorrectly identified as change in 

the underlying concept using these types of measure. 

 

4.4 Example: Economic Values and Economic Perceptions 

In this example, we fit a series of cross-lagged models to investigate the relationship between 

retrospective perceptions of the macro economy (EP) and ‘left-right’ economic values (EV). The 

data come from the British Election Panel Survey 1992-1997. The first wave of the study was 

conducted in April 1992 with a response rate of 73%, representing a total sample size of 3534. 

Respondents were then followed up annually until 1997 using a combination of face-to-face, 

telephone and postal methods. The analytical focus for this study comprises those individuals 

who were interviewed in 1992, 1994, 1996 and 1997, which due to attrition reduced the analytical 

sample to 1640 respondents. EP is measured by three five point items tapping  perceptions of the 

unemployment rate, the rate of taxation, and the general standard of living ‘since the last election’ 

(1992). EV is measured by the six item scale developed by Heath, Evans and Martin (1993), the 

full question wordings of which can be found in Appendix A.  
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In the models that follow, we use either summed scale or latent variable measures of each 

construct. Both approaches can be viewed as a form of error correction, although the latent 

variable approach involves a more robust correction and allows modelling of covariances 

between error terms. We specify no strong hypotheses regarding the causal relationships between 

these two variables. However, we note that a plausible case can be made for each to cause the 

other. To wit, economic perceptions have been shown to be partially endogenous to political 

preferences (Evans and Andersen 2006) and beliefs about how the economy should be managed 

may be influenced by an individual’s assessment of macro-economic performance (e.g., 

government fiscal policy should vary as a function of the rate of inflation and the jobless count).  

 

The models we present are deliberately selected to demonstrate the importance of two issues in 

model specification discussed above: correcting for random and systematic errors in the 

measurement of concepts; and specifying an appropriate covariance structure between error and 

disturbance terms. Our data source for the following analyses is the 1992 to 1997 British Election 

Panel Study, covering five waves of data collection (the economic perception variables were not 

administered in 1993), with an analytical sample size of 1640. Table 4.1 presents a summary of 

the estimated standardised regression coefficients for each model, fitted using MPlus 3.1 (Muthén 

and Muthén 2003). 

 

Table 4.1: Summary of cross-lagged and auto-correlated parameter estimates 

 

 

 

 

 

 

 

 Model Number 

Path 1 2 3 4 5 6 

Value -> Value - .68 1.01 .97 .90 .94 

Perceptions -> Perceptions - .26 .58 .27 .70 .71 
Value -> Perceptions .38 .26 .53 .48 .3 .18 

Perceptions -> Value .38 .04 .12 n.s. .1 n.s. 



 
 

 
 
 

28 

We begin by fitting a ‘naïve’ model (Model 1), which simply regresses the 1992 cross-sectional 

summed-scale measure of EP on to the 1992 cross-sectional summed-scale measure of EV. We 

find a significant positive relationship of 0.38. Because this is a cross-sectional regression, the 

standardised estimate of the causal influence of EP on EV is the same as that of EV on EP and 

the observed association may not be indicative of a causal relationship.  Next, in Model 2, we 

make use of the longitudinal dimension of the data by fitting a cross-lagged panel model to the 

first two waves of data (1992 and 1994), again using the summed scale measures of each concept. 

The covariance between the disturbances of the two endogenous variables is not estimated. The 

results of this model suggest a reciprocal mechanism, with significant cross-lagged effects in both 

directions, although both coefficients are considerably weaker than those from the ‘naïve’ cross-

sectional model, with the path running from EP to EV now only marginally greater than zero. 

 

Model 3 replicates Model 2, but this time each concept is specified as a latent variable, measured 

by multiple indicators. No covariance paths between error terms of the observed variables or 

disturbances of the endogenous variables are estimated. The parameter estimates for Model 3 

show a marked increase in magnitude, as would be expected after a correction for random error 

in the independent variables. Model 4 estimates covariances between the error terms for the same 

item over time, in order to accommodate systematic error in the indicators of the latent 

constructs. This has the effect of reducing the magnitude of the estimates of the cross-lag and 

stability parameters. Again, this should be expected, because in the previous model these 

systematic errors have effectively been channelled into the stability and cross-lagged parameters. 

Note, also, that in Model 5 the path from economic perceptions to economic values now 

becomes non-significant. Model 5 extends Model 4 to incorporate all five waves of data. The 

coefficients for the stability and lagged effects are constrained to be equal across waves. Factor 

loadings for the same item are constrained to equality across waves to impose meaning invariance 

on the items as measures of the latent concepts. By extending the model over 5 waves of data 

again we have changed the nature of the causal inference; we now find support for the reciprocal 

effects model, with both cross-lagged paths positive and significant at the 5% significance level. 
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Model 5, however, constrains the covariances between the disturbance terms of the endogenous 

variables to zero. Model 6 freely estimates the covariances between adjacent disturbance terms 

for the same endogenous variable and between the disturbance terms for the two endogenous 

variables at the same wave of measurement. This has the effect of making the causal path from 

EP to EV non-significant and indicates that the apparent causal effect for this parameter, 

identified in earlier models, likely results from un-modelled causal variables.  In summary, this 

example demonstrates how different approaches to modelling error the variances and 

covariances can substantially alter the nature of the causal inferences an analyst would make.  
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5 RANDOM EFFECTS MODELS FOR REPEATED MEASURES DATA 

 
Both graphical chain models and cross-lagged panel models can be used to model the pathways 

through which variables measured over time are associated. However, both frameworks model 

the repeated measures as a set of discrete transitions from one time point to the next. Often we 

are interested in addressing a rather different set of questions about change over time, which treat 

the repeated measures as a sample of observations taken from a continuous developmental 

process. For example, imagine that we have 12 weight measurements taken from a sample of 

newborns at monthly intervals. Rather than analysing the data as a chain of regressions of each 

time point on the previous measurement (or some other lag function), we might wish to model 

the repeated observations as indicators of an underlying developmental trend. For this example, 

we would expect the overall trend (weight in newborns) to be broadly linear and positive (most 

children grow steadily over the first year of life). However, we would also expect there to be 

some individual variation around this overall trend, with some children growing faster than 

others. If individuals do vary in their rates of growth, we will naturally be interested in 

understanding the characteristics of individual children (both time-constant and time-varying) 

that are associated with variability in growth. It is these types of questions that random effects 

models are well suited to addressing. Random effects models, also called multilevel models, are 

discussed in detail in the books by Hox (2002) and Snijders and Bosker (1999).  

 

A naïve model for a linear trend over time would be the simple linear regression model of the 

response on time: 

.10 ijijij etY ++= ββ        (5.1) 

If we can assume that the errors ije  have mean zero and are independent for different i  or j , 

then we can use standard methods to fit this model. However, for repeated measures of the 

response on the same individual, it is unlikely that ije  is independent of ike , for kj ≠ , that is, it 

is unlikely that the errors are uncorrelated over time, even if we were to add covariates to the 

model (5.1). 
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To address this problem, consider the alternative model 
 

,10 ijiijij eutY +++= ββ       (5.2) 

where iu  is the individual-specific residual and represents unmeasured individual factors which 

affect Y . 

 

A random intercept model, which enables the analyst to model individual trajectories of 

development over time, specifies that iu  follows a normal distribution with mean zero and 

variance 
2

uσ . Furthermore, it is assumed that iu  is uncorrelated with ije  and ijt . Under this 

assumption it follows that the variance of ijY  is ,
22

eu σσ +  where 
2

uσ  measures the between-

individual variation and 
2

eσ  is the residual within-individual variation. Hence, the proportion of 

the total variation that can be attributed to the between-individual variation is 

.
22

2

eu

u

σσ

σ
ρ

+
=  

This ratio is also the within-individual correlation, often called the intra-class correlations. If most 

of the variation is between individuals then individuals change little over time and hence the 

intra-class correlation is large. Conversely, if there is a lot of variability within individuals (relative 

to the total variability) then the intra-class correlation will be small. See Snijders and Bosker 

(1999) and Hox (2002) for basic introductions to the random intercept model and interpretation 

of .ρ    

 

The random intercept model (5.2) can be extended in two ways. (1) Time-constant and time-

varying covariates can be added to explain some of both the within and between individual 

variation. (2) Different, or more complicated functions of time can be used in the model. For 

example, if the response did not vary linearly with time, then time could be replaced by log(time) 

or a time-squared could be added to the model. Where there is no a priori theoretical expectation 

for the shape of the trajectory, one approach for selecting an appropriate growth function is to 
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inspect the empirical growth record for the sample as a whole (Willett and Sayer 1994). Another 

is to start by including time as a factor in the model and then to examine the estimated effects at 

each time points for trends. This is the approach we use in our example below. 

 
 
The random intercept model assumes that the correlation between any two responses for the 

same individual is the same and equals .ρ  For example, this model assumes that the correlation 

between the first and last observation on an individual is the same as the correlation between the 

first and second observations. The correlation structure is often called exchangeable or uniform 

and is often untenable when there are more than a few repeated observations on each individual.  

 

One way to relax the assumption of an exchangeable correlation structure is to allow the 

coefficient of time to also vary randomly across the individuals by including a random slope for 

time: 

.)( 10 ijiijiij eutbY ++++= ββ       (5.3) 

Here ib  is an individual specific normally distributed random slope with mean zero and variance 

2

bσ . Furthermore, ib  is assumed to be uncorrelated with ije  but can be correlated with iu . 

Unlike the random intercept model, the random slope model does not impose an exchangeable 

correlation structure on the data and the variance of ijY  is not constant over time.  

 

5.1 Example: Random Effects Modelling of Men’s and Women’s Gender Role 

Attitudes Over Time  

Our aim is to examine the factors related to men’s and women’s gender role attitude score, as 

measured in 1991, 1993, 1995 and 1997. The data come from the British Household Panel 

Survey. Men and women aged 16 to 59 who were childless in 1991 and who took part in all of 

the waves through to 1997 are taken as the analysis sample of 1429 individuals. A summary score 

of gender role attitude is derived as the sum of the responses to six attitude statements (see 
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Appendix A), with the repeated measure of gender role attitude nested within individuals. 

Therefore we have individuals i = 1 to 1429 and observations j = 1 to 4, for all individuals. Our 

dependent variable is the summed attitude score at observation j for individual i, ijY  at ,ijt  

=1it 1991, …, 4it =1997. Our covariates are: sex; age in 1991, categorized; highest educational 

qualification in 1991; whether the respondent’s mother worked when she was a child; and current 

economic activity, which is time-varying.  

 

The responses to the attitude statements at different time points on the same individual are 

unlikely to be independent, even after conditioning on the covariates. Therefore, we take account 

of this by partitioning the total residual for individual i  at time point j  into an individual-

specific random intercept iu  which is constant over time, plus a residual ije  which varies 

randomly over time. First, let us consider time as a factor and no other covariates. Three dummy 

variables are included in the model to indicate whether the observation was taken in 1993, 1995 

or 1997. (The reference group is 1991.) Table 5.1 presents the maximum likelihood estimates of 

the parameters in this model. From these estimates, we can see that score decreases with time 

and so henceforth we consider time as a continuous variable; see Table 5.2.  

 

Table 5.1: Parameter estimates for random-intercept linear regression of attitude with time 

included as a factor. 

 
Parameter 
estimate 

Standard 
error P-value 

Year (Ref: 1991)    

   1993 -0.072   0.082    0.378 

   1995 -0.422 0.082 0.000 

   1997 -0.659 0.082 0.000 

Constant 20.31 0.094 0.000 

uσ  2.780 0.060 0.000 

eσ  2.184 0.024 0.000 

ρ  (rho)  0.618 0.012  
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Table 5.2: Parameter estimates for the random-intercept linear regression of attitude with time 

treated as continuous. 

 
Parameter 
estimate 

Standard 
error P-value 

Time -0.116 0.013 0.000 

Constant 20.374 0.088 0.000 

uσ  2.780 0.060 0.000 

eσ  2.185 0.024 0.000 

ρ   0.618 0.012  
 

 

The magnitudes of the estimates of the between-individual and the within-individual standard 

deviations, uσ  and eσ  respectively, are similar suggesting that, after controlling for time, there is 

unexplained variation in gender role attitudes both between individuals and within individuals 

over time. 

 

Next we include main effects for the remaining covariates (Table 5.3). All of the covariates are 

found to be significantly associated with gender role attitude. Positive parameter estimates 

indicate a higher attitude score. Hence, more liberal attitudes are found, on average, if the 

individual is female, younger, more educated, if their own mother worked when they were a child, 

and if they work full-time. More conservative attitudes are found among those undertaking family 

care.  
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Table 5.3: Parameter estimates for the random-intercept linear regression of attitude with time 

and the other covariates. 

 
Parameter 
estimate 

Standard 
error P-value 

Time -0.101 0.013 0.000 

Sex (Ref: Male) 1.254 0.151 0.000 

Age (Ref: 16-21 years)    

   22-29 -0.579 0.183 0.002 

   30-39 -0.736 0.209 0.000 

   40-59 -1.653 0.292 0.000 

Education in 1991 (Ref: Less than A level)    
   A level or above 0.544 0.152 0.000 

Mum worked (Ref: No)    
   Yes 1.045 0.1544 0.000 

Economic activity (Ref: Full-time)    
   Part-time -0.517 0.152 0.001 
   Other  -0.303 0.108 0.005 
   Family care -1.883 0.193 0.000 

Constant 18.24 0.289 0.000 

uσ  2.566 0.057 0.000 

eσ  2.170 0.023 0.000 

ρ   0.583 0.012  
 

 

The inclusion of individual-specific characteristics, such as sex age and economic activity, has 

reduced uσ  from 2.780 to 2.566 and eσ  from 2.185 to 2.170. In other words the covariates in 

the model are able to explain some of the between-individual differences, and only a little of the 

within-individual variability over time. We have only included one time-varying covariate: 

economic activity. We might speculate that the inclusion of more time-varying covariates would 

result in a greater ability to explain more of the within-individual variability.  

 

By including interactions between each covariate and time we can test whether the impact of any 

of the covariates on gender role attitude changes over time. Interactions of time with age and 

economic activity were non-significant (confirmed using likelihood ratio tests) and so were 
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removed. The parameter estimates for the resulting final model are shown in Table 5.4. The 

results suggest that gender role attitudes decrease, in comparison with the baseline men’s scores, 

if the individual is a woman, is more educated, and if their mother worked. 

 

Table 5.4: Parameter estimates for the random-intercept linear regression of attitude with time, 

the other covariates and significant interactions between time and the other covariates. 

 
Parameter 
estimate 

Standard 
error P-value 

Time  0.020 0.027 0.459 

Sex (Ref: Male) 1.488 0.169 0.000 

Sex by Time interaction -0.081 0.026 0.002 

Age (Ref: 16-21 years)    

   22-29 -0.579 0.183 0.002 

   30-39 -0.736 0.209 0.000 

   40-59 -1.653 0.292 0.000 

Education in 1991 (Ref: Less than A level)    
   A level or above 0.755 0.171 0.000 

Education by Time interaction -0.070 0.026 0.007 

Mum worked (Ref: No)    
   Yes 1.279 0.174 0.000 

Mum worked by Time interaction -0.078 0.026 0.003 

Economic activity (Ref: Full-time)    
   Part-time -0.451 0.152 0.003 
   Other  -0.289 0.108 0.008 
   Family care -1.807 0.194 0.000 

Constant 19.12 0.210 0.000 

uσ  2.569 0.057 0.000 

eσ  2.163 0.023 0.000 

ρ   0.585 0.012  
 

 

We can also include random coefficients or random slopes into our model to allow for between-

individual heterogeneity in the effects of the covariates. Let us add a random coefficient (slope) 

for time to the model that includes all of the other main effects and interactions which were 

found to be significant in the random intercept model (Table 5.5). 
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Table 5.5: Parameter estimates for the random-effects linear regression of attitude with time, 

remaining covariates and significant interactions between time and the remaining covariates. 

 
Parameter 
estimate 

Standard 
error P-value 

Time  0.020 0.031 0.512 

Sex (Ref: Male) 1.486 0.172 0.000 

Sex by Time interaction -0.084 0.029 0.004 

Age (Ref: 16-21 years)    

   22-29 -0.582 0.183 0.002 

   30-39 -0.735 0.210 0.000 

   40-59 -1.648 0.292 0.000 

Education in 1991 (Ref: Less than A level)    
   A level or above 0.758 0.174 0.000 

Education by Time interaction -0.069 0.029 0.016 

Mum worked (Ref: No)    
   Yes 1.280 0.177 0.000 

Mum worked by Time interaction -0.078 0.030 0.003 

Economic activity (Ref: Full-time)    
   Part-time -0.421 0.153 0.006 
   Other  -0.272 0.108 0.012 
   Family care -1.691 0.195 0.000 

Constant 19.12 0.213 0.000 

bσ  0.311 0020      

uσ  2.732 0.072  

Correlation between iu  and ib  -0.306 0.048  

eσ  2.008 0.027  
 

 

The random intercept coefficient is of a similar magnitude as before suggesting that there is 

significant unobserved individual-level variation in the initial attitude score. The random slope 

coefficient is 0.311 and statistically significant suggesting that there is also significant variation 

between individuals in the way attitudes change over time. The average slope across men is 0.020. 

However, this slope varies randomly between individuals with a standard deviation of 0.311. 

Therefore, a man whose slope is one standard deviation above the average has a slope of 
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0.020+0.331 = 0.33, i.e., he has an increasing gender role score, whereas a man with a random 

slope one standard deviation below the average will have a slope of -0.291.  

 

The correlation between the random intercept and random slope tells us how change over time is 

related to the initial score. The correlation is negative, suggesting that those who initially had a 

higher attitude score are more likely to experience a decrease in attitude score over time, whilst 

those who initially had a lower score are more likely to experience an increase in their attitude 

score: this is likely to reflect regression to the mean. The inclusion of the random slope does not 

alter the size or significance of the covariates, apart from the one time-varying covariate, current 

economic activity. Now that we have allowed for a random slope, the effect of undertaking 

family care is slightly reduced (-1.807 reduced to -1.691).  In some circumstances it is appropriate 

to include more random coefficients for other time-varying covariates. These would have a 

similar interpretation. 

 

Random effects models for repeated measures data have become popular in a number of 

disciplines ranging from Educational Studies (see, for example, Muthén and Khoo 1998;  

Goldstein 2003) to Psychology (see, for example, McArdle and Nesselroade 1994). A key 

assumption of the random effects estimator is that the random effects are uncorrelated with the 

observed time-constant and time-varying covariates in the model. In practice, this assumption 

often goes untested and can result in biased parameter estimates, if empirically unwarranted 

(Halaby 2004). Whether the assumption of zero correlation is justified can be assessed via the 

Hausman test (Hausman 1978), where significant values of the test should result in rejection of 

the random effect assumption. In such a case, the fixed effects estimator is to be preferred 

(Wooldridge 2002). The fixed effects estimator is equivalent to including individual as an 

explanatory variable with m  categories. It has the effect of partialling out (controlling for) all 

observed and unobserved time-constant characteristics of the sample units. This means that it is 

not possible to model change over time as a function of observed fixed characteristics of sample 

members, such as date of birth or gender. For this reason, and because it is generally less efficient 
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than the random effects estimator, many analysts prefer the random to the fixed effects 

specification. However, as a number of authors have noted, this is unlikely to be a sensible choice 

if the key assumption of zero correlation between the random effects and the observed covariates 

is untenable (Allison 2005). 

 

Two-level random intercept models for continuous outcomes can be estimated in most statistical 

software packages, with some packages allowing for binary and categorical dependent variables 

and extensions to incorporate random slopes and higher levels of a hierarchy, e.g., repeated 

observations clustered within an individual, where individuals are clustered within say a 

household or a school. Recent developments within more specialist multilevel modelling software 

permit the estimation of simultaneous outcomes (see, for example, Lillard and Waite 1993) and 

multilevel factor models (see, for example, Goldstein and Browne 2002; Skrondal and Rabe-

Hesketh 2004). 
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6 LATENT GROWTH CURVE MODELLING 

Latent Growth Curve (LGC) models (McArdle 1988; Meredith and Tisak 1990; McArdle and 

Nesselroade 1994; Muthén 2000) are part of the general family of random effects models (Laird 

and Ware 1982) and are equivalent, under a broad set of conditions, to the random effects 

models for change that we examined in Section 5. In the extant literature, the use of LGC models 

is interchangeably referred to as ‘latent curve analysis’, ‘latent trajectory analysis’ and ‘growth 

curve analysis’. 

 

Perhaps the primary advantage of the LGC approach, from the perspective of the substantive 

analyst, is that it is a simple extension of the more general SEM framework (Willett and Sayer 

1994). This allows the analyst to take advantage of standard SEM features, such as global tests 

and assessments of model fit, multiple indicator latent variables (Muthén and Muthén 2003), 

model based imputation of missing data (Ferrer, Hamagami and McArdle 2004), reciprocal path 

estimation (Finkel 1995), mediational decomposition (Bollen 1989), and simultaneous modelling 

of multiple developmental processes, with regressions amongst the latent growth parameters 

(Curran and Muthén 1999).  

 

We should emphasise that such technical features are not by any means exclusive to the LGC 

framework. Several are already implemented in non-SEM software and it is likely that, in the 

future, these will all become fully integrated into the multilevel modelling framework and its 

associated software. However, such models are already easily implemented in current versions of 

popular, commercially available SEM packages such as Lisrel, MPlus, EQS and Amos. For this 

reason analysts may, at present, prefer the LGC framework to estimate models if they wish to 

incorporate these types of features. 
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6.1 The Linear Growth Curve Model 

Linear growth curve models differ most noticeably from random effects models in the way that 

time is incorporated via constraints applied to the factor loading matrix in a latent variable model, 

rather than as an exogenous predictor in a random effects regression model (Curran, Bauer, and 

Willoughby 2004). Thus, in the LGC framework, growth parameters are specified as latent 

variables, with the shape of the developmental trajectory incorporated as a function of the 

number of latent variables specified in the model, and constraints applied to their factor loadings. 

Where the random effects model approaches the modelling of individual growth from a nested 

data perspective (measurements within individuals), SEM conceives it as latent variables 

measured by multiple indicators, where the observed indicators are the repeated observations 

(Curran 2003). Thus, the LGC perspective regards the repeated observations as imperfect 

measures of an underlying, latent trajectory, the shape of which can be estimated via analysis of 

the mean and covariance structure of the observed. Generally, LGC models are estimated using 

maximum likelihood, though a range of alternative estimators are available where data depart 

from multivariate normality. For models with missing data, the full information maximum 

likelihood (FIML) estimator is used (Wothke 1998). 

 

The unconditional linear growth model is portrayed in the path diagram in Figure 6.1. LGC 

models can also be represented using standard SEM matrix notation, but space precludes a 

consideration of this specification here (see Bollen and Curran 2006, for a detailed treatment). 

 

The model is termed unconditional because no predictors of growth are included in the model. 

Four repeated measures of Y  ( 1Y  to 4Y ) represent the observed indicators of two latent 

variables, the intercept and the slope factors of the growth trajectory. In a cross-sectional 

structural equation model, the factor loadings of latent variables are generally freely estimated and 

are taken as denoting the reliability of the indicators as measures of the latent construct(s). In 

Figure 6.1, the loadings of the intercept factor are constrained to 1 and the loadings of the slope 

factor are constrained to be equal to the rank of the measurement occasion, i.e., the loading for 
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1Y  is constrained to 0, 2Y  is constrained to 1, 3Y  is constrained to 2, and 4Y  is constrained to 3. 

In addition to these constraints on the factor loadings, the intercepts of the observed indicators 

are also constrained to zero. The means and variances of the intercept and growth factors are 

freely estimated.  

 

Figure 6.1: Four wave unconditional linear LGC. 

 

 

 

 

 

 

 

 

 

 
 
 

 

The constraints placed on the observed indicators and the factor loadings allow the means of the 

intercept and slope factors to be interpreted, respectively, as the mean value of Y  at the first 

wave of measurement, and the mean rate of change in Y  for each unit increase in time, over the 

four waves of measurement. The means of the latent intercept and slope are, therefore, 

equivalent to the fixed intercept and slope parameters in random effects models, the 0β  and 1β  

in equations (5.2) and (5.3). The variances of the latent intercept and slope variables in Figure 6.1 

represent individual heterogeneity around the group means, so-called ‘inter-individual difference 

in intra-individual change’. They are, thus, equivalent to the random effects variances,  
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2

bσ  in model (5.3). The covariance between the intercept and slope latent variables is also 

estimated and represents the relationship between initial status and rate of change. Generally, this 

covariance tends to be negative, indicating the ‘regression to the mean’ effect commonly found in 

observational studies (Campbell and Kenny 1999). The model in Figure 6.1 shows the repeated 

measures as simple observed variables. A major advantage of the LGC framework is the ability to 

specify the repeated observations as latent variables measured by multiple indicators. The use of 

multiple indicators yields a correction for random and systematic measurement error in the 

estimation of the concepts of interest, and allows a test of factorial invariance, as discussed in 

Section 4.3. 

 

6.2 Non-linear Growth Curve Models 

The linear growth model can be extended to cover non-linear trajectories by incorporating 

additional latent variables, with factor loadings constrained to the powers of the linear slope 

growth parameter. For instance, if we wish to specify a quadratic trajectory, we include a new 

latent variable whose the factor loadings are constrained to be the square of the corresponding 

loading of the slope latent variable. Thus, Figure 6.1 would be extended by adding an additional 

latent variable, with loadings constrained to 0, 1, 4 and 9.  The interpretation of the mean of the 

slope latent variable now becomes the average initial change trajectory (at the first wave of 

measurement), while the mean of the quadratic latent variable indicates the direction and rate of 

change in the mean of the slope latent variable, for each unit increase in time. The variances of 

the growth parameters still denote individual variability around these group means. 

 

Higher order polynomials can be estimated by incorporating additional latent variables, with 

factor loadings constrained to cubed or higher-powered functions of the linear slope loadings, so 

long as there are sufficient waves of data to allow to model to be identified. Other ways of 

modelling non-linear trajectories include estimating the growth trajectory as a series of discrete 

‘pieces’, or allowing some of the factor loadings of the linear slope latent variable to be freely 

estimated (Bollen and Curran 2006). Where possible, prior theory should guide the analysts’ 
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decision regarding the appropriate shape of the growth trajectory. Where prior theory is no guide, 

inspection of the empirical growth record should provide an indication of the appropriate 

functional form. The analyst may then fit models with a range of linear and non-linear 

specifications of time, using indices of model fit to determine which provides the best fit to the 

observed data. 

 

6.3 Conditional Growth Curve Models 

Having estimated a model which describes the shape of the population average growth trajectory, 

and the degree of individual heterogeneity around this group mean, the obvious next step for the 

substantive analyst is to examine predictors of individual change over time. The way in which 

predictors of individual change are incorporated depends on whether the predictor is time-

constant or time-varying.  

 

Within the SEM framework, the inclusion of time-constant covariates is straightforward; we 

simply incorporate the covariates of interest into the model and estimate regression paths 

running from the exogenous predictors to the latent growth parameters. Figure 6.2 show a path 

diagram for a conditional growth curve model with a time-constant predictor for the example in 

Section 6.5, where more details about the variables are given. Because the slope growth 

parameter is now specified as endogenous to the time-constant covariates, this becomes a 

conditional growth curve model. A regression path running from the time-constant covariate to 

the intercept growth parameter denotes the expected change in the mean of the developmental 

variable at the first wave of measurement, for each unit increase in the fixed covariate. Note that 

the interpretation of the mean of the intercept growth factor depends on the coding of time for 

the slope growth parameter. It is standard to constrain the first factor loading of the slope 

parameter to zero, making the mean of the intercept latent variable equivalent to the mean of the 

trajectory at the first wave of measurement. A regression path from a time-constant covariate to 

the slope latent variable is interpreted as the expected change in the mean rate of change, for 
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each unit increase in the covariate. Time-constant covariates in the LGC framework can be 

specified as simple observed variables or as latent variables with multiple indicators. Standard z-

tests can be used to determine the significance of the regression paths, although the likelihood 

ratio test can also be used by comparing the model with these parameters estimated, to a model 

in which they are constrained to zero. The full range of standard SEM indices of model fit can be 

used to assess the empirical adequacy of the full structural model.  

 

Figure 6.2: Predicting change in economic perceptions by 1992 vote choice. 

 

 

 

 

 

 

 

 

 

 

 

 

 

There are two main ways to incorporate a time-varying covariate into the model. The first 

approach is to regress the repeated measures on the observed time-varying covariate at each time 

point, as shown in Figure 6.3, where Y  denotes the response variable and x  the time-varying 

covariate. When the time-varying variables are allowed to covary with the growth parameters, the 

parameter estimates for the effects of the time-varying variable on the repeated response are 

equivalent to those from the fixed effects model briefly discussed in Section 5 (Allison, 2005). By 

using this model specification, we control for unobserved unit heterogeneity but that we cannot 
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use observed time-constant variables to model the repeated measured directly (Halaby 2004). 

However, as shown in Figure 6.2, the effect of time-constant variables can be estimated indirectly 

via their effect on the growth parameters. As with time-constant predictors of growth, time-

varying predictors can be specified as directly observed single indicators or as multiple indicator 

latent variables. The basic model specification in Figure 6.3 can easily be extended to incorporate 

multiple time-varying predictors and to include a combination of time-varying and time-constant 

predictors of growth.  

 

Figure 6.3: Conditional 4 wave LGC with time a varying covariate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Constraining the covariance between time-varying covariates and the growth parameters to zero 

yields the random effects specification, in which time-constant variables can be used to model the 

repeated measures directly, as opposed to indirectly via their influence on the growth parameters. 

Whether the fixed or random effects model should be preferred can be evaluated via the 

likelihood ratio test, as the fixed effects model is nested within the random effects model.  

 

Intercept 

Slope 
 

1Y  2Y  3Y  4Y  

1e  2e  
3e  2e  

2 

1 

1 
1 

1 

0 
1 

3 

1x  
2x  3x  

4x  



 
 
 

47 

A second way of incorporating the effect of time-varying predictors into the model is to 

simultaneously estimate two or more growth trajectories, the so-called multiple process model. 

The univariate LGC model may be extended to include the simultaneous estimation of two or 

more growth trajectories, with correlations and regressions estimated between the slope and 

intercept growth parameters of each process. For instance, we can estimate the correlation 

between two slope parameters to examine whether change in one variable is related to change in 

a second variable over the same time period. Alternatively, we might regress the slope latent 

variable of one process on to the slope latent variable of a second process. This yields a 

conditional slope parameter, which can be interpreted in a similar way to the time-varying 

covariate model in Figure 6.3. Similarly, we might regress the slope factors on to the intercept 

parameters to test whether rate of change is a function of initial status on the same, or a different 

variable (Duncan et al. 1999).  

 

Whether the analyst prefers the first or the second of these approaches to modelling time-varying 

predictors of growth will depend on the specific context of the particular substantive analysis. In 

general, however, the time-varying covariate approach may be favoured due there being no 

assumptions required regarding the shape of the trajectory. On the other hand, the multiple 

process model yields a potentially richer picture of growth on all time-varying variables and 

allows an assessment of covariance between intra-individual change for these variables.  

In this section we have presented a basic overview of some simple LGC models. However, it is 

important to note that the main benefit of the LGC framework is not to be found in this type of 

model, for these may generally be equally well estimated within the random effects frameworks. 

The real benefits of the LGC framework are to be found in the extensions of these basic models 

to incorporate, inter alia, the use of multiple indicator measurement models with tests of factorial 

invariance, growth mixture models to examine qualitatively different growth trajectories across 

population sub-groups (where group membership is unknown), multiple process models with 

multiple indicators of the repeated observations, modelling distal outcomes with growth 

parameters, and auto-regressive latent trajectory models which integrate the autoregressive and 



 
 

 
 
 

48 

LGC approaches into a single framework. Interested readers are directed toward the excellent 

book by Bollen and Curren (2006) for an introduction to these more advanced techniques. 

 

6.4 Example: Party Support and Economic Perceptions 

In this example we fit a conditional LGC model with a time-constant predictor of growth. The 

data come from the 1993 to 1997 waves of the 1992-1997 British Election Panel Study. A path 

diagram for the model is set out in Figure 6.2.  The repeated observations of standard of living 

perception (Slp1 to Slp5) are measured by a single indicator which asks respondents whether the 

general standard of living in Britain has fallen a little (1),  fallen a lot (2), stayed the same (3), 

increased a little (4), or increased a lot (5) since the General Election in 1992. The factor loadings 

of the intercept factor are all constrained to 1. The factor loadings for the slope latent variable are 

constrained to numbers which represent the time ordering of the repeated observations, thus 

specifying linear growth. As the first loading of the slope factor is constrained to be zero, the 

mean of the intercept latent variable corresponds to the mean standard of living perception at the 

first wave. The time-constant predictor of growth is a dummy variable, which is coded 1 for 

respondents who voted Conservative in the 1992 General Election and 0 for respondents who 

voted for any other party. The sample size for the analysis is 1640. 

 

First we consider the unconditional LGC model, that is one that doe not include the dummy 

variable for Conservative vote in 1992. The estimated mean of Slp1 was 2.25 (with estimated 

standard error, s.e. = 0.020). This increased at an average rate of 0.119 (s.e. = 0.006) units for 

each additional wave of the panel. This means that, on average, perceptions of the general 

standard of living were increasing over time, a perception which is in general accord with the 

macro-economic indicators for the period. The estimated variance of the intercept growth factor 

for the unconditional model was 0.26 (s.e. = 0.024) and the variance of the slope growth factor 

was 0.007 (s.e. = 0.003), indicating that there was significant individual heterogeneity around the 
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group means for both initial status and rate of change. The model fits the data well by 

conventional standards (CFI = 0.975; RMSEA = 0.039). 

 

The significant variances of the growth parameters suggest that it may be worthwhile introducing 

covariates into the model to explain this heterogeneity. The regression paths running from the 

dummy variable for Conservative vote in 1992 to the intercept and slope latent variable are both 

positive and significant, at 0.323 (s.e. = 0.037) and 0.046 (s.e. = 0.012) respectively; these are the 

unstandardized regression coefficients. This indicates that Conservative voters in the 1992 

General Election gave more positive evaluations of the general standard of living in 1992 and 

these perceptions became more favourable between 1993 and 1997 at a faster rate than those 

who voted for other parties. Again, the model fits the data well by conventional standards (CFI = 

0.978; RMSEA = 0.036). The results of the model suggest the theory that economic perceptions 

are conditioned by partisan orientations (Evans and Andersen 2006). That is to say, citizens 

provide more favourable ratings of economic perceptions if they voted for the incumbent party. 

An alternative explanation of these results is that Conservative voters had objectively better 

standards of living in 1993 and increased their objective standard of living at a faster rate than 

non-Conservatives over the relevant period. Such an alternative hypothesis could be investigated 

by including a time-varying covariate for income, or some other measure of objective standard of 

living, in the manner set out in Section 6.3. 
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7 DISCUSSION 

 
In this paper we have provided an introductory overview of five general approaches to the 

analysis of repeated measures data: change score models, graphical chain models, cross-lagged 

panel models, random effects models and latent growth curve models. We stress that none of 

these models should be considered as generally superior to the others. Rather, the choice of 

approach will depend upon the substantive question to be addressed and the form of the data 

available. In several instances, one model is simply a special case of another (e.g., the change 

score model is a special case of the fixed effects model). If it is important to identify indirect as 

well as direct relationships between explanatory variables and the outcome of interest, then either 

graphical chain modelling or cross-lagged SEM is probably the more appropriate approach. On 

the other hand, if the shape of development over time of a response variable, e.g., an attitude, an 

achievement score or a psychological measure, then either the random effects modelling or latent 

curve analysis would be more appropriate. 

 

The choice between graphical chain models or cross-lagged panel models, or between random 

effects models and latent growth curve models is less clear cut. In practice the choice is likely to 

depend on the number of variables to be included in the analysis, the type of the response 

variables (continuous, binary, ordinal, etc.), and the need to address measurement error, complex 

survey design and weighting issues. Graphical chain models allow the researcher to fit relatively 

simple models, often already familiar to the social science researcher, for various types of 

response. By using the Markov properties of the repeated measures we can draw conclusions 

about conditional independence and dependence structures of subsets of variables, and hence 

identify direct and indirect pathways through which explanatory variables are related to the 

outcome of interest. Additionally, graphical chain models offer the practical advantage that 

standard methods can be used to handle complex survey design and non-response. 

Disadvantages of graphical chain models include difficulty adjusting for measurement error and 

the lack of a global likelihood for the model. Since each part of the model system is estimated 

separately it is not possible to test for equality of effects across time. The cross-lagged SEM 
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approach has the advantage of being able to decompose associations between variables into 

direct and indirect effects and also permits the inclusion of multiple indicator latent variables, 

which are useful for identifying and adjusting for measurement error. As the structural equation 

model is estimated as a set of simultaneous equations, substantively meaningful constraints can 

be applied to different parameters in the model. For instance, it is straightforward to constrain all 

stability or cross-lagged parameters to be equal over time, or to apply constraints to the pattern 

of factor loadings for the same variable over time. On the other hand, the SEM approach 

requires careful interpretation and becomes increasingly complex with multiple category 

dependent variables and a large number of observed variables, where misspecification of 

substantively irrelevant parts of the model can bias the parameters in which we are truly 

interested. Furthermore, not all SEM packages allow for complex survey designs and the 

inclusion of weights, though this is an area currently experiencing rapid development. 

 

We have deliberately presented the five types of model considered in this paper as distinct 

approaches. However, as we said at the outset, there are strong overlaps between all of them. 

Take, for instance, random effects models and latent growth curve modelling within the SEM 

framework. Under many conditions these two are completely equivalent and will yield identical 

parameter estimates (Curran 2003). Furthermore, recent theoretical and software developments 

mean that distinctions between traditional multilevel models and structural equation models are 

becoming ever more blurred. Current developments include the incorporation of factor models 

in multilevel modelling software (Goldstein and Browne 2002) and the extension of SEM to 

three or more levels (Skrondal and Rabe-Hesketh 2004).  Recently a number of more general 

modelling frameworks have been proposed which can incorporate continuous and categorical 

latent variables in a number of different ways (see, for example, Muthén and Muthén 2003; 

Skrondal and Rabe-Hesketh 2004). 
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SUGGESTED FURTHER READING 

The reference list contains a comprehensive listing of relevant literature. Here we identify a 

selection of references that we consider useful starting points for the substantive analyst. 

 

For discussions of the choice of fixed or random effects specification and practical issues in 

conducting and interpreting these models, Allison (2005), Halaby (2004) and Woodridge (2002) 

are recommended. These references also cover change score models as special cases of the fixed 

effects specification. Note that the Allison book focuses on how to implement these models in 

the software package SAS. Nonetheless, it is a very clear exposition of the underlying issues for 

applied analysts. The Wooldridge book is advanced but very comprehensive. 

 

An accessible introduction to graphical chain models is given in Wermuth (1993). In the same 

book, Whittaker (1993) introduces graphical models. He also contrasts path diagrams with 

independence graphs. For a more detailed and advanced treatment of graphical chain modelling, 

we recommend the book by Cox and Wermuth (1996). 

 

For structural equation modelling approaches to the analysis of panel data, we recommend Finkel 

(1995) and Bollen and Curren (2006). The Finkel text is a clear and accessible account of the 

autoregressive approach. The Bollen and Curran book focuses on the latent growth curve 

approach, though also has useful material on autoregressive approaches. It provides details of a 

‘hybrid’ model which combines both autoregressive and latent growth curve approaches within a 

single modeling framework. 

 

For the multilevel approach to panel data we recommend the accessible account by Hox (2002). 

For those wishing to understand the similarities and differences between the random effects 

/multilevel approach, Curran (2003) and Willett and Sayer (1994) are clear and informative. 
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APPENDIX A  

 

A.1 Question Wordings for the Gender Role Attitude Scale 

1. A pre-school child is likely to suffer if his or her mother works 

2. All in all, family life suffers when the woman has a full-time job 

3. A woman and her family would all be happier if she goes out to work 

4. Both the husband and wife should contribute to the household income  

5. Having a full-time job is the best way for a woman to be an independent person 

6. A husband’s job is to earn money, a wife’s job is to look after the home and family.  

 

Response categories ranged from strongly disagree (1) to strongly agree (5). Items 3, 4 and 5 were 

reverse coded for the analysis.  

 

A.2 Question Wordings for Heath et al. (1993) ‘Left-Right’ Economic Value 

Scale  

 

1. Ordinary people get their fair share of the nation’s wealth.  

2. There is one law for the rich and one for the poor.  

3. Private enterprise is the best way to solve Britain’s economic problems.  

4. Major public services and industries ought to be in state ownership.  

5. It is government’s responsibility to provide a job for everyone who wants one.  

6. There is no need for strong trade unions to protect employee’s working conditions and wages.  

 

Response categories ranged from strongly disagree (1) to strongly agree (5). Items 1, 3 and 6 were 

reverse coded for the analysis.  
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